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ABSTRACT 
This work develops some practical approximations needed to simulate a 

high plasma density volume bounded by walls made of dielectrics or metals which 
may be either biased or floating in potential. Solving Poisson’s equation in both 
the high-density bulk and the sheath region poses a difficult computational 
problem due to the large electron plasma frequency. A common approximation is 
to assume the electric field is computed in the ambipolar approximation in the 
bulk and to couple this to a sheath model at the boundaries. Unfortunately, this 
treatment is not appropriate when some surfaces are biased with respect to 
others and a net current is present within the plasma. This report develops some 
ideas on the application of quasi-static external electric fields to plasmas and the 
self-consistent treatment of boundary conditions at the surfaces. These 
constitute a generalization of Ohm’s law for a plasma body that entails solving for 
the internal fields within the plasma and the potential drop and currents through 
the sheaths surrounding the plasma. 



1. INTRODUCTION AND MOTIVATION 
The motivation for this work originates in the desire to simulate a high 

plasma density region which is bounded by thin sheaths near walls made of 
dielectrics or metals which maybe either potential biased or floating. It is well 
known that solving Poisson’s equation in both the high-density bulk and the 
sheath region poses a difficult computational problem. A common approximation 
(in semiconductor processing plasmas, for example) is to assume the electric 
field is computed in the ambipolar approximation (zero net current) in the bulk and 
couple this to a sheath model at the boundaries. Unfortunately, this treatment is 
not appropriate when some surfaces are biased with respect to others and a net 
current is present in the plasma. This report develops some ideas on the 
application of static external electric fields to plasmas and the self-consistent 
treatment of boundary conditions at the surfaces. Together these constitute a 
generalization of Ohm’s law for a plasma body that entails solving for the internal 
fields within the plasma together with the potential drop and currents through the 
sheaths surrounding the plasma. This report targets an audience which includes 
those wanting a concise summary of the treatment of quasi-static electric fields in 
dense plasmas. 

II. BASIC PLASMA EQUATIONS 
While in principle the analysis described here can be cast in terms of a full 

kinetic treatment, all the theory here is for a fluid description of plasma evolution 
[1] in a background gas with the electrons treated in the drift-diffusion 
approximation. The drift diffusion approximation for the electrons makes the 
problem considerably less stiff, since the removal of electron inertia eliminates the 
inverse plasma frequency as the fastest timescale. Application of the equations 
presented here to other descriptions (such as kinetic or gas flow) will require 
some modifications. In particular, it may be necessary to add terms for the flow 
and density variations of the background neutral gas and the spatial variation of 
the electron temperature. If the ionization fraction is high, there are terms 
representing the interaction of the electrons with the ions which should be 
included. An estimate of the ionization fraction at which the electrons interact 
equally with ions and neutrals is N/NO=0.008 T~2, with T, in eV. These omissions 
will be noted in the text at appropriate places, None of these omissions invalidate 
the basic method of solution for the fields within the plasma. In order to simulate 
the dynamic problem, the displacement current would need to be included in the 
formulation. This dynamical situation would arise in the case of a conductor 
biased at rf frequencies, as is common in semiconductor processing devices. 

The ion continuity equation (iCE) is 

lii+V”(lZiGi)=~ (1) 

where ni is the ion number density, ~i is the ion fluid velocity, and ~ is the 

volume ionization source rate. The electron continuity equation (eCE) is: 
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ne +V”(neiie)=q (2) 

where ne is the electron number density and ii~ is the electron fluid velocity. The 

ion momentum equation (iME) is 

(3) 

where ~ = – ~~ is the electric field, vi is the sum of momentum transfer and 

ionization collision frequencies, and the ion diffusion term, which is almost always 
small, has been neglected. There is a constant background neutral density which 
is assumed larger than the plasma density and nearly stationary. Corrections can 
be introduced for these effects. If we neglect electron inertia in the electron 
momentum equation, we arrive at the electron drift-diffusion equation (eDDE): 

1- 
iie =–pe)?– De;%e, 

e 

(4) 

where p~ is the electron mcbility and De is the electron diffusivity. Again this 

neglects collisions with the ions and the flow of the background neutral gas. 
Poisson’s equation describes the collective interaction of the charged species: 

–V2(b=V ”E=A(L?i-ile). (5) 
E* 

We are assuming that the plasma is dominated by a single positive ion species. 

The particle electric current density, ~, within the plasma is given by the sum of 
the ion and electron currents: 

-- 
.7=(? (l’Zi iii –ne~e)=ji +je. (6) 

All other symbols are as usually defined. 
Eqs.(1 )-(6) can be solved numerically as written. This solution would 

include the plasma bulk and the sheath regions, with boundary conditions (b.c.) to 
be imposed at the actual physical walls or electrodes in contact with the plasma. 
The displacement current and electron inettia might be needed in cases with 
high-frequency fields applied to the plasma - such situations will not be 
considered here. In general for higher density plasmas with slowly varying 
applied fields, the plasma is quasi-neutral except in the thin sheaths. This allows 
elimination of the Poisson equation with the associated large electron plasma 
frequency as done in the next sections. If the plasma density is very low, though, 
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the restoring field due to charge separation is weak and the plasma will not 
remain quasi-neutral. In such a case the approximations discussed here are not 
applicable. 

11.A QUASI-NEUTRAL APPROXIMATION (QNA) 
With some care as to all the consequences, we can just set ne = ni in the 

above equations to derive this approximation. The QNA should be derived by an 
ordering approximation so that the size and importance of various terms can be 
assessed. Eq. (1 ) is unchanged, but Eq. (2) becomes: 

which is subtracted from Eq.(1 ) to give 

or, 

where, 

‘“(ni(tii-ii~))=o 

(7) 

(8) 

(9) 

(lo) 

using the definition of J from Eq.(6) in the quasi-neutral limit. The current in the 
plasma obeys Eq.(9), which can be reformulated as a total surface integral using 
the divergence theorem: 

expressing the total current conservation throughout the volume in terms of the 
currents on each surface element labeled by n. These jn are obtained from 

boundary conditions and are functions of the local plasma density, plasma 
potential, and b.c. potentials. The iME in Eq.(3) is unchanged by quasi-neutrality. 
The eDDE in Eq.(4) now contains the ion density in the diffusion term: 

(12) 

This electron fluid velocity is then used in the relations (9) and (1 O) above. An 
important point is that the bulk plasma current can be specified throughout the 



plasma in the QNA with the only restriction made by the source-free condition in 
Eq.(9). 

What does this mean? In the basic equations of motion, Eqs.(1 )-(6), the 
Poisson equation determines the field and potential from the charge density. 
Thus there is self-consistency between the field due to the space charge and the 
acceleration of the electrons and ions. Now in the QNA there is limited self- 

consistency. One can specify an arbitrary J, subject to source-free conditions in 
Eq.(9) and the yet-to-be-discussed b.c. on the QNA, and solve for the ion and 
electron motion without any feedback to the imposed current. This would involve 

integration with Eqs.(1 ), (3), (10), and (12), where ii~ is determined from fii and ~ 

by Eq.(1 O), and ~ from Z, and ni in Eq.(12). The field would then enter the iME 

to drive the ion solution. 

Ill. ANALYSIS OF THE QNA 
The computational domain for the QNA must exclude the transition region 

between the Bohm point and the physical wall. Since some physical quantities 
vary strongly across this region, we must accordingly revise the b.c. to be applied 
to the QNA solution. The QNA contains both the ambipolar and strong-internal 
field limits, both of which are described in the Appendix. We discuss it from a 
more practical point of view here, including the imposition of sheath and surface 
b.c. Combining Eqs.(10) and (12) to eliminate zl~: 

~=eniGi+eni~e~+eDeqni, 

or, in terms of ~, 

~1 k~ 1 ~n 
E= ‘—iii ‘—— 

‘niPe P. e ‘i i “ 

(13) 

(14) 

The Einstein identity, D. /~, = kT, /e, was used in Eq.(14). When combined 

with the iCE and the iME in Eqs. (1 ) and (3), this furnishes a complete description 
of the plasma response when the current density is a prescribed quantity. Of 
course the current density in any real situation is an unknown which is dependent 
on the potential differences applied to the plasma. That is why the QNA must be 
connected across the sheaths to the walls where the potentials are defined. This 
will be done next. 

111.A. BOUNDARY CONDITIONS 
Boundary conditions can be formulated quite generally in terms of Eqs.(1 )- 

(6), but these equations will not be solved as they stand due to severe numerical 
problems related to the plasma frequency (or dielectric response frequency) and 
the thin sheath region. Here we will be concerned with imposing sheath- 
approximation boundary conditions (b.c.) to the bulk plasma when it is described 
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by the QNA. The QNA is not valid within the sheath regions. We will use a label 
ofs to denote a “surface” region for quantities evaluated at the Bohm point and a 
label of w to denote “wall” for quantities which are evaluated at the actual physical 
surface when they are different across the sheath. Typically, only the potential 
and electron density change abruptly across the sheath. 

The simplest of the situations can be described as follows. Let the plasma 
be contained within a volume defined by surfaces with specified potentials on 
some elements (conducting surfaces) and unknown voltages on others 
(dielectrics or floating conductors). Currents are not normally b.c. quantities, but 
are determined in response to the imposed voltages. However there may be 
zero-current conditions imposed on the dielectric surfaces or insulated metal 
surfaces. Some of the boundaries may not be actual surfaces, but regions where 
the plasma flux and density are specified. 

From analysis of the plasma sheath, one knows that the following is 
approximately true for any surface embedded within the plasma. First of all, the 
ion current at the Bohm point is given by 

j~,i = t?l’li U~ (15) 

at a particular boundary point in terms of the neighboring ion density and Bohm 
velocity [2] in the plasma. This ion current is nearly constant across the sheath. 
The Bohm velocity is a function of the local electron temperature and ion mass: 

UB ‘~-. Thevelocity k directed toward the surface. The electron 
current is given in terms of the potential drop from the plasma bulk, defined at the 
Bohm point, to the physical surface. The Bohm point lies near the physical 
surface in contact with the plasma, and it is the transition point between the 
quasi-neutral bulk and the non-neutral, charge-separated sheath region. The 
potential of the surface maybe known or unknown. This is represented as 

j.,. = – ~eni UT, exp(–eAV / kT, ), (16) 

where AV is taken to be a positive quantity for a wall potential Vw less than the 

nearby plasma potential. Thus AV = OS – Vw. ~~ denotes the value of the 

plasma potential at the Bohm point prior to the sheath drop. The current through 
the surface element is the sum of the ion and electron current. zq.~ is the thermal 

electron velocity, zq-~ = d~” . Displacement current can be neglected 

in this study as we are not dealing with rapidly varying applied potentials. 
All dielectric surfaces and their free-space analogs are required to have 

zero current conditions because they rapidly charge up to such a voltage that the 
current is zero. Then the potential drops at those surface elements are evaluated 
in terms of the local ion density and electron temperature by combining Eqs.(15) 
and (16) to give zero current. The voltage-specified, metal-like surface elements 
will have a non-zero current determined by the potential drop from the nearby 
plasma to the element. It is now obvious that we must solve for the potential field 
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throughout the plasma bulk (but not in the sheaths) because the currents at the 
metal surfaces are expressed in terms of the potential drop between the plasma 
potential and the potential specified in the b.c. Designate the potential field as ~. 

It solves: 

VQ=-E, (17) 

where E is given by the QNA approximation in Eq.(1 4). The result is the same 

as using Eq.(17) to replace ~ on the RHS of Eq.(1 3). What we now have for the 
“electronic” part of the problem are Eqs, (9), (13), and (17), with current b.c. 
expressed in terms of the potential as maybe expressed using Eqs.(15) and (16). 

111.B. SOLVING THE EQUATIONS 
The question is how to solve this combination of equations without undo 

difficulty. The solution is nonlinear because of the exponential dependence of the 
surface currents on the unknown plasma potential in the b.c. The equations for 
the potential and the current can be collected as the set: 

~“ii, = eni(uB– ~uTeexp(–eAV /kTe)), 
swjtace 

where 

(18) 

(19) 

is the total ion and electron diffusion current, which may be regarded as known 
from the “ion part” of the plasma solution. One may combine the first and second 
members of Eq.(18) to form the Poisson-like equation for the potential: 

(20) 

This equation is “complete” as it stands. Of course the b.c. must be incorporated 
by using the third memberofEq.(18). Eq.(20) is just a restatement ofEq.(18) 
except for the b.c. Because the equations are linear in @, except for the b.c., we 

can superimpose a particular solution, @P, and a homogeneous solution, oh. 

Substitution of the superposition into the first memberofEq.(18) shows that, if the 
particular solution solves: 



‘~e ‘i ‘@p = ‘i+ed~ (21) 

then the homogeneous solution must solve: 

(22) 

Eq.(21 ) insures that Eq.(20) is satisfied, of course. Moreover, Eq.(21 ) uniquely 
defines @p up to an additive constant. Eq.(22) shows that oh is a homogeneous 

solution of Eq.(20), Le. with the RHS set to zero. The first member of Eq.(22) 

cannot be solved directly since ~ is an unknown within the volume. From this 
particular solution and homogeneous solution we can match the b.c. All b.c. are 

in terms of ~ which appears in the equation for the homogeneous solution, but 
the nonlinear dependence on potential requires both the homogeneous and 
particular solutions. 

IILC. PLASMA WITHOUT APPLIED FIELD 
Consider a special case of the plasma problem where all boundaries are 

dielectrics or free space where the current b.c. is zero current everywhere. Then 

~ = O and Eq.(22) allows us to set @h to zero or a constant. There is no need to 

find @P as the electric field is all that is needed for the ion EOM, and it maybe 

solved directly from Eq.(21 ): 

~=–~~p=– 1 ~i+ed 
ep e Tli 

1 kTevn kc ~n, = ‘—Zi —— ‘— .= 
Pe ‘ni ‘ ‘ni 1 “ 

(23) 

This is the ambipolar diffusion result for the internal field. An alternative 
terminology for (23) is the Langmuir-Tonks equation for the electric field. 

111.D. PLASMA WITH WEAK APPLIED FIELD 
The equations for the field can be linearized if we assume that the applied 

field is weak. Exactly how “weak is weak” is to be determined. Note that if 
iterative methods are employed (i.e. fully-implicit Newton-like methods) the 
linearization step is not necessary, indeed the weakness of the field becomes 
irrelevant, and will have greater flexibility in the range of applied fields we can 
consider. Consider the total ion and electron current through a surface region s, 
obtained by combining Eqs.(15) and (16) and shown in the last member of 
Eq.(18). This is: 



7“ii, = eni (UB – ~ UT, eXp(–e(@~ –VW) I k%)), (24) 
su~ace 

where fi~ is an outward normal to the surface. Vw is the value of the applied 

voltage at the physical surface element labeled w which is next to s. We now 

write @~ as a correction to the value of the potential at the surface, @~O), that 

gives zero current through the surface element: 

(25) 

and assume that @~ is close to @$o) in order to justify an expansion of the current 
b.c. formula: 

(26) 

This linearization is to be applied to all surface elements where the current is 
nonzero because of voltage b.c. If the current is constrained to be zero as for 
dielectric boundaries, it is exact. 

Eq.(20) maybe solved subject to b.c. derived from Eqs.(1 8), (25), and (26) 
to give the Cauchy b.c. description of the linearized equations for the field: 

b . 
‘Pe 

(27) 

All quantities in the latter expression are evaluated at the surface. Recall that the 

quantity ~i+ed is evaluated from the ion part of the total solution procedure. 
Eq.(27) is the generalized Ohm’s law [4] appropriate for the flow of current 
through a plasma subjected to voltage boundary conditions at the surface. Of 
course a simple Ohm’s law cannot appear until the current in Eq.(18) is 
connected to the applied voltages that are the b.c. used to solve Eq.(27). We will 
later give example solutions that make the current-to-voltage relations more 
transparent. 
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It is our belief that Eq.(27) constitutes a starting point for numerical solution 
of the plasma in an external field. Examination of the linearization approximation 
shows that it should be valid for current densities less than the order of the ion 
saturation (Bohm) current. This can be seen directly in Eq.(26) where the size of 
the exponential is related to the current through the surface. 

IV. EXAMPLE SOLUTIONS 
An example is sometimes worth many words. The first example solution 

is for the field within a 1 D (one dimensional) plasma subjected to potential b.c. 
on the walls. Generally we will be solving the equations with linearized b.c. given 
in Eq.(27). Consider a 1 D plasma with constant ion density, stationary ions, and 
constant electron temperature. This implies, where primes are used to denote 
spatial derivatives: 

ni = constant , Ui = O , ~i+~~ = 0, 

v2(#)=qY’=0, @(x)= A+ B.x, B=– E, 
(28) 

where we have written out the general solution to the Laplace-like Eq. (27), The 
b.c. are imposed: VO at x = XO and VI at x = xl. The b.c. in Eq.(27) take the 

form: 

w%) _ A+ ’(xo) = ()$0) , 
e UB 

(#)(xl) + Elk (jY(xJ = o~”) , 
f? UB* 

(29) 

from which one can determine the unknown constants A and B in the Laplace 

‘o) is defined in Eq.(25). The difference of the @~o) is just the solution. ~~ 

difference of the applied voltages because of the constant electron temperature 
assumption. The potential and field are found to be: 

(p(x) = ‘“T+vp-E(x-xoix’) 
E=– 

Iq-vo 

xl –Xo+a’ 

where 

(30) 
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A=2 w Pe 2De —— = —9 
e UB u~ 

v’ = 
kT 

[) 
‘ln ~ . 

e 4 u~ 

(31) 

VP is the usual potential drop in a sheath. Note that the vacuum field (obtained 

by setting 2 = O in Eq.(30)) is screened by the presence of A, but not in a 
manner that one might expect: the screening in this model example does not 
depend on the plasma density within the system! The effect of the plasma does 
not go away as ni becomes small until the sheath boundaries become so thick 

that they become wide and invalidate the separation of the region into bulk and 
sheaths. Another interpretation of ~ from Eq.(31 ) is that it is twice the 
characteristic length to produce an electron diffusion velocity equal to the ion 
Bohm velocity. This is on the order of 100 or more electron mean free paths. 

One can use this example to put another condition on the validity of the 
linearization. The plasma potential should aways exceed the value of the 
applied voltage on the boundaries; otherwise the currents in Eqs.(15) and (16) in 
the Bohm sheath are not valid. If we evaluate the potential given in Eq.(30) and 
require, say, that @(xl) > VI, we find that this requires: 

v–vo<l+%-~o 
2VP a- 

(32) 

For small ~ this is little concern, but for larger a the voltage difference is 
restricted to twice the size of the plasma sheath drop. An evaluation of the size 

of % for a typical Cl+ plasma shows that 

xl 
– ‘0 = 0.003 ‘; – ‘0 
a MFP 

(33) 

where aM~p is the electron mean free path involved in the electron mobility. For 

a H+ plasma the numerical constant in Eq. (33) is 0.02. Thus for low pressure 
(mTorr) plasmas of cm dimension, we may expect that the ratio in Eq.(33) is small 
and that the applied potential difference is required to be of the size of the plasma 
potential or less in order that the linearization be accurate. The current through 
this example problem is given by: 
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J=e~,niE=– ‘~@i (~_ vo) 
xl –Xo+a 

e~eni 
(xl – xo )Eapplied = 

xl –Xo+a 

which identifies the conductivity, o , as: 

(?/LeTli 
CT= 

l+a/(xl–xo)” 

(34) 

(35) 

Again the “simple” case is obtained by setting a = O, whereas the effect of the 
sheaths lowers the conductivity. 

As a second example, consider the free-space boundary or the b.c, at any 
dielectric interface where the total current is zero. In this case the linearization is 
exact and the Cauchy b.c. in Eq.(27) reduce to the Neumann b.c. obtained by 

inserting the zero-current condition, @~ = @$o): 

(36) 

This is the same form as the ambipolar approximation for the bulk field obtained 
in Eq.(23). Thus, if only dielectric b.c. are present, we may solve for the 
ambipolar field directly as done in Section 11.A. In the general case of conducting 
and zero-current boundaries, one must solve Eq.(27) with the appropriate b.c. 
applied for all boundaries. 

Altogether, we have reduced the computation of the plasma in a external 
field to the solution of the Poisson-like Eq.(27) with either Cauchy or Neumann 
b.c. with the only significant approximation being the linearization of the plasma 
current at the sheaths. 

V. DISCUSSION 
What is done in this work is based on the QNA for the plasma bulk, the 

utilization of sheath approximations for the boundaries, and the linearization of 
the sheath equations themselves. The linearization of the sheath equations is 
probably not a severe problem since the actual currents drawn through the 
plasma will be limited to ion saturation currents. 
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The major new feature of these notes is the necessity to solve the 
Poisson-like generalized Ohm’s law Eq.(27) to determine the electric field within 
the plasma bulk. Since this is a standard equation for certain types of Poisson 
solvers, this is not a major obstacle. However it appears that boundary Green’s 
function methods are not applicable. 
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In this Appendix, we consider two limiting forms of the electric field equation 
which are commonly in use. 

AMBIPOLAR LIMIT 
This is an approximation closely related to the QNA which is very useful for 

bulk plasma simulations when it is valid. The basic assumption is that the 
electrons evolve due to a balance between the charge-separation field and the 
spreading due to their kinetic diffusion. From Eq. (12), assume that the mobility 

and diffusion terms dominate the equation. Then one solves for ~ [3]: 

(A-1 ) 

in terms of the ion (plasma) density. This equation can be expressed in terms of 
a pressure gradient if the more complete fluid equations are used for the iME. 

One is left with Eqs.(1 ), (3), and (A-1) to solve. The total current ~ is small 
because of the assumptions. Arbitrary currents can not be imposed because the 
fields could exceed the ambipolar field in Eq.(13) and invalidate the assumption. 

STRONG-INTERNAL-FIELD LIMIT 
In the case that there is an internal field within the plasma stronger than 

the field due to the electron diffusion gradients, one can write down a very simple 
set of equations describing the plasma motion. Consider the conditions on the 
electron fluid velocity: - 

lfi~l>>ltiil 

1 
ltiel>>De — 

?$ 

such that Eqs.(1 O) and (12) reduce to 

. . 

VTli (A-2) 

J=je=–eni~e=enipe~. (A-3) 

This relation says that the current, which is dominated by the electrons, is given 
by the electron conductivity and the electric field. No other condition determines 
the field except that it sustains the imposed current. Now one can solve Eqs.(1 ), 

(3), and (A-3) with ~, ~, or il. arbitrarily specified, subject to Eq. (9) and b.c. 

Notice that this has broken the electrons out of the loop of self-consistency 

completely. The only constraint on ~ is the source-free condition of Eq.(9). 
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